| Birzeit University |
| :---: | :---: |
| Department of Physics |
| Mathematical Physics, Phys330 |
| Fall 2020 |
| Final-Exam |

1. The potential at the surface of a sphere (radius R) is given by $V_{0}=k \cos ^{3}(\theta)$, where k is a constant. Find the potential inside and outside the sphere.
2. Find the Laplacian for the following coordinate system, then do separation of variables.

$$
\begin{aligned}
x & =u v \cos \phi \\
y & =u v \sin \phi \\
z & =\frac{1}{2}\left(u^{2}-v^{2}\right)
\end{aligned}
$$

3. Given

$$
f(x)= \begin{cases}x & \text { if } 0 \leq \mathrm{x} \leq 1 \\ 2-x & \text { if } 1 \leq \mathrm{x} \leq 2 \\ 0 & \text { if } 2 \leq \mathrm{x}\end{cases}
$$

Find the cosine transformation and evaluate the following integral

$$
\int_{0}^{\infty} \frac{\cos ^{2} \alpha \sin ^{2} \alpha / 2}{\alpha^{2}} d \alpha
$$

4. Given

$$
f(x)= \begin{cases}\delta(x-a / 2) & \text { if } 0 \leq \mathrm{x} \leq \mathrm{a} \\ 0 & \text { otherwise }\end{cases}
$$

Write the function as a linear combination of the complete set $\phi_{n}=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)$
5. Prove the following vector identity:

$$
\nabla \cdot(\nabla \phi \times \nabla \psi)=0
$$

Both ϕ and ψ are scalar functions
6. Find out if the following functions are analytical or not, also find if they are harmonic or not.
(a) $f(z)=\frac{i z}{|z|^{2}}$
(b) $f(z)=\ln (z)$
7. Use Cauchy's theorem to evaluate the following integral:

$$
\oint_{C} \frac{e^{3 z}}{(z-\ln 2)^{4}} d z
$$

where C is a square with vertices $\pm 1, \pm i$
8. Given the following generating function of $D_{n}(x)$

$$
\sum_{n=0}^{\infty} D_{n}(x) t^{n}=\frac{1-t x}{1-2 t x+t^{2}}
$$

(a) Find $D_{n}(x)$ for $\mathrm{n}=0$ and 1
(b) Prove the following recurrence relation

$$
D_{n+1}(x)=2 x D_{n}(x)-D_{n-1}(x)
$$

(c) Are these polynomials orthogonal. Justify your answer

